Page images
PDF
EPUB

TABLE I.

LOGARITHMS OF NUMBERS.

EXPLANATION.

LOGARITI

[ocr errors]

GARITHMS are a series of numbers so contrived, that the sum of the Logarithms of any two numbers, is the logarithm of the product of these numbers. Hence it is inferred, that if a rank, or series of numbers in arithmetical progression, be adapted to a series of numbers in geometrical progression, any term in the arithmetical progression will be the logarithm of the corresponding term in the geometrical progression.

This table contains the common logarithms of all the natural numbers from 0 to 10000, calculated to six decimal places ; such, on account of their superior accuracy, being preferable to those, that are computed only to five places of decimals.

In this form, the logarithm of 1 is 0, of 10, 1; of 100, 2 ; of 1000, 3 &c. Whence the logarithm of any term between 1 and 10, being greater than o, but less than 1, is a proper fraction, and is expressed decimally. The logarithm of each term between 10 and 100, is I, with a decimal fraction annexed; the logarithm of each term between 100 and 1000 is 2, with a decimal annexed, and so on.

The integral part of the logarithm is called the Index, and the other the decimal part.-. Except in the first hundred logarithms of this Table, the Indexes are not printed, being so readily supplied by the operator from this general rule; the Index of a Logarithm is always one less than the number of figures contained in its corresponding natural number--exclusive of fractions, when there are any in that number.

The Index of the logarithm of a number, consisting in whole, or in parts, of integers, is affirmative ; but when the value of a number is

: less than unity, or 1, the index is negative, and is usually marked by the sign, - placed either before, or above the index. If the first significant figure of the decimal fraction be adjacent to the decimal point, the index is 1, or its arithmetical complement 9 ; if there is one cipher between the decimal point and the first significant figure in the decimal, the index is 2, or its arith. comp. 8; if two ciphers, the index is - 3, or 7, and so on ; but the arithmetical complements, 9, 8, 7&c. are rather more conveniently used in trigonometrical calculations.

A

The decimal parts of the logarithms of numbers, consisting of the same figures, are the same, whether the number be integral, fractional, or mixed : thus,

of the natural

number

23450
2345,0
234.50 3
23.450

the Log.
2.3450
2.3450
,02345
_.002345

4.370143
3.370143
2.370 143
1.370143
0.370143
1.370143
2.370143
3.370143

or

9.370143
8.370143
7.370143

N. B. The arithmetical complement of the logarithm of any number, is found by subtracting the given logarithm from that of the radius, or by subtracting each of its figures from 9, except the last, or right-band figure, which is to be taken from 10. The arithmetical complement of an index is found by subtracting it from 10.

PROBLEM I.

To find the logarithm of any given number.

RULES.

1. If the number is under 100, its logarithm is found in the first page of the table, immediately opposite thereto.

Thus the Log, of 53, is 1.724276. 2. If the number consists of three figures, find it in the first column of the following part of the table, opposite to which, and under 0, is its logarithm

Thus the Log, of 384 is 2.584331--prefixing the index 2, because the natural number contains 3 figures.

Again the log. of 65.7 is 1.817565-prefixing the index 1, because there are two figures only in the integral part of the given number.

3. If the given number contains four figures, the three forst are to be found, as before, in the side column, and under the fourth at the top of the table is the logarithm required.

Thus the log. of 8735 is. 3.941263—for against 873, the three first figures found in the left side column, and under 5, the fourth figure found at the top, stands the decimal part of the logarithm, viz .941263, to which prefixing the index, 3, because there are four figures in the natural number, the proper logarithm is obtained.

Again the logarithm of 37.68 is 1.5761||--Here the decimal part of the logarithm is found, as before, for the four figures ; but the index is 1, because there are two integral places only in the natural number.

4. If the given number exceeds four figures, find the difference between the logarithms answering to the first four figures of the given number, and the next following logarithm; multiply this difference by the remaining figures in the given number, point off as many figures to the right-hand as ibere are in the multiplier, and the remainder, add:

ed to the logarithm, answering to the first four figures, will be the fee quired logarithm, nearly.

Thus; to find the logarithm of 738582 ; the log of the first four figures, viz. 7385 .868350 the next greater logarithm

= 868409 Dif.

59 to be multiplied by the remaining figures

= 82

118 472

4838

then to .868350
add

48

the sum 5.868398, with the proper index prefixed, is the required logarithm.

5. The logarithm of a vulgar-fraction is found by subtracting the logarithm of the denominator from that of the numerator ; and that of a mixed quantity is found by reducing it to an improper fraction, and proceeding as before. Thus to find the Logarithm of 1;

from the log. of 7 = 0.845098 subtract the log. of 8 =

s 0.903090

Remainder = 9.942008 = the required log.

PROBLEM II.

To find the number answering to any given logarithm.

RULES.

1. Find the next less logarithm to that given in the column marked o at the top, and continue the sight along that horizontal line, and a logarithm the same as that given, or very near it, will be found ; then the three first figures of the corresponding natural number will be found opposite thereto in the side column, and the fourth figure immediately above it, at the top of the page. If the index of tbe given logarithm is 3, the four figures thus found are integers; if the index is 2, the three first figures are integers, and the fourth is a decimal, and so on. Thus the log. 3.152580 gives the Nat. Numb. 1357 2.132580 gives

135.7 1.132580 gives

13.57 0.132580 gives

1.357 9,132580 gives

.1357 &c. 2. If the given logarithm cannot be exactly found in the table, and if more than four figures be wanted in the corresponding natural number; then find the difference between the given and the next less loga

rithi's, to which annex as many ciphers as there are figures required above four in the natural number ; which divide by the difference be tween the next less, and next greater logarithnıs, and the quotient an pexed to the four figures formerly found; will give the required natural number. Thus to find the natural number of the log. 4.828991;

the next less log. is .828982 which gives 6735 ; the next greater log. is 829046

[ocr errors][merged small][merged small][merged small]

4 therefore 1.4 being annexed to 6735, the required natural number, 67351.4, is now obtained.

TABLE I.

LOGARITHMS OF NUMBERS.

1.908486 1.913814 1.919078 1.924279

1.934498 1.939519 1.944483 1.949390

No. Log.

0.000000

0.301030 3 0.477121 4 0.602060 50.698970 6 0.778151 7 0.845098 8

0.903090 9 0.954243 TO 1.000000 II 1.041393 12 1.079181 13 1113943 14 1.146128 IS 1.176091 16

No. Log. No. Log. No. Log. No. Log
21
1.322219 41 1.612784 61 1.785330

81
22
1.342423

42
1.623249
62 1.792392

82
23 1.361728 43 1.63346863 1.799341 83
24 1.380211 44 | 1.643453 64 1.806180

84 25 1.397940 45 1.65321365 1.812913 85

1.929419 26

1.414973 | 46 | 1.662758 66 1.819544 1 86 27 1.431364 47 1.67 2098 67 1.826075 87 28 1.447158 48 1.681241 68 1.832509

88 29 | 1.462398 49 1.690196 69 1.838849 89 30 1.477121 50 1.698970 70 1.845098 90 1.954243 31 1.491362

51 1.707570 71 1.851258 91 32 1.505150 52 1.716003 72 1.857332

92 33 1.518514 53 1.724276 73 1.863323 93 34 1.531479 54 1.732394 74 1.869232 94 35 1.544068 55 1.740363 75 1.875061 95

1.977724 36 1.556302 56 1.748188 76 1.880814

1.959041 1.963788 1.968483 1.973128

1.204120 17 1.230449 18

1.255273
1.278754
1.301030

90
37 1.568202 57 1.755875 77 1.886491 97
38 1.57978458 1,76342878 1.892095

98 39 1.591065 59 1.770852 / 79 1.897627 99 40 1.602060 60 1.778551 80 1.903090 1100

1.982271 1.986772

1.991226

1.995635 2.000000

JOO 101 102

[ocr errors]

No. 0 1

2 3 4 1 51 6 17 8 9 oooooo1000434000868001301 001734/002166 002598 003029 003460003891 004321 004751005180 005609 006038006466006894007321007748 008174

008600 oog 206 009451009876 010300 0107241011147 011570011993 01:415 103 01 2837 013259013680014100'0145200149401015360015779016197016615 104 1017033017451 017868|018284 0187000190161019532 0199471020361 020775 105 10211891021603'022016 022428 022841 023252023664 024075 024486024896 106 025306025715,026:24 026533 0269420273501027757028164028571028978 107 3293841029789,030195030600 031004031408031812032216 032619 033021 108 0334241033826 034227 034628,0350290354301035830036229 036629037028 109_037426037825.038223038620 039017039414 039811040207 040602 040948

041393'0417871042182|042575'042969 0433620437; 5044148044540'044931

045323 045714'046105046495046885047275047664 048053 048442 048830 112 049218049606,049993050380 050766 0511521051538 051924052309;052694 113 1053078053463053846054230 05461305499605537805576010561421056524 114 056905057286057666 058046'058426058805 0591850595631059942060320 15 060698,0610751061452 061829'062206 0625821062958063333063709064083 116 064458 064832065206065580 065953 066326 066699 067071 067443 067814 117 1068186068557 068928 069298 069668070038070407 070776071145071514 118 071882072250072617 072985.073352073718074085 0744511074816075182 119 075547 075912076276 076640077004 077368077731078094 078457 078819 1 20 079181079543 079904 080266 080626080987 081347081707|082067 082426 121 0827851083144083503 083861084219 084576 084934 085291 085647086004 122 1086360086716, 087071 087426087781 0881360884900888450891981089552 123 1089905090258 090611090963091315091667 092018|092370 092721093071 124 1093422093772 094122 094471094820 0951690955181095866 096215 096562 125 1096910097257 097604 097951 098297 098644 098990099335 099681100026 126 100370 100715 101059101403 101747 102090 102434102777 103119 103462 127 103804/ 104146 104487 104828105169|105510105851106191 106531106370 128 107210 107549107888108227 108565 108903 109241109578109916110253 129 110590010926111262111598111934 112270112605192940113275113609 130 113943114277 114611114944 115278115610115943 "16276 116608116940 131 117271 117603 117934118265118595 118926 19256119586119915120245! 132 1205741120903121231121560121888 1222161225431228711123198|123525 133 123852124178124504124830125156125481 125806126131 : 26456 126781 134 127105127429127752128076 128399128722129045129368129690 130012 135 130334 130655130977 131298 131619 131939132260 132580132900133219 136 133539 133858134177 134496134814135133 135451 135768136086136403 #137 136721137037 137354 137670 137987 138303 138618438934139249139564 138 139879 140194 140508 140822 141136 141450 141763142076142389142902 139 143013143327 143639143951 144263 144574 144885145196145507 145818 140 146128146438 146748 147058147367147676147985148294 148603 148911 141 149219149527149835450142150449 150756 251063 451370151676"51982 142 152288)152594152900153205153510153815154119 154424 154728155032 143 155336 155640155943156246 156549|156852 157154 157457457759158061 144 158362 158664 158965159266 159567 159868 160168160468160769151068 145 161368161667 161967 162266 162564 162863163161 163460563757 164055 147 167317 167613 167908 168203168497: 68792169086169380169674 69968 148 170262 1705551708481711411171434 171726 172019172311_172603172895 149 173186, 173478 173769 174060174351174641 174932 175222175512175802 150 176091 176381 176670976959 1772481177536 1778251781131178401 178689 151 178977179264 179552 179839 180126180413180699 180986181272|1815;8 152 181844 182129 182415 182700182985183270183554183839 184123184407 153 184691 184975185259 185542185825186108186391186674 186956 187239 154 187521187803188084188366 188647 188928189209 189490 189771|190051 155 190332190612 190892191171191451191730 192010 192289 192567 192846 156 193125 193403193681193959 194237194514) 194792195069 195346 195623 157 195900 196176 196452196729 197005 197281 197556 197832 198107 198382 158 198657 198932) 199206 199481199755200029 200303 200577/200850201124 159 201397 201670 201943|202216202488 2027611203033 203305203577 203848 2

5

6 7 8 9

146 164353164656164947 165244165541163838166134 166430 166726167022

« PreviousContinue »