Page images

simpler in the arrangement of its convolutions, but so closely approximating that the exact state of the case is as nearly as possible described, if we say that the brain of the ape, while it is decidedly smaller, appears like a miniature of the human brain in a slightly undeveloped state.*

The human brain is an elaborate organ, exceedingly complicated in its convolutions. We can not, indeed, describe it as the most convoluted, for the brain of the elephant is at least as distinguished for the beauty and complication of its folding, and the brain of the whale is far more minute and detailed, presenting quite a multitude of minute convolutions. For descriptive purposes, the human brain is divided into four superficial areas, known as lobes, and pretty clearly defined by certain natural boundaries. From the lower part of the organ, entering at a point scarcely half way back is a fissure or cutting running up into the mass in a direction uniformly inclining towards the rear, known as the Sylvian fissure; while coming over the summit, at a point near the middle, and inclining down towards that just described, is another fissure, known as the fissure of Rolando. By these

* See Appendix XI.

two deeply cut hollows, the brain is marked off into four separate areas superficially, a front and a rear lobe; and two central lobes, the one upper and the other under. Besides this there is a concealed and isolated lobe, described on account of its situation as an island, which is covered from view by the overlapping of the two sides of the Sylvian fissure. Such is a description in outline of the configuration of the human brain, to which must be added the statement that each lobe is filled in with its own special arrangement of convolutions, each one having at least three well defined lines of convolution. Each of the hemispheres is similarly arranged, though not by any means quite identical in disposal of convolutions, yet the general description now given is strictly applicable to both. The two hemispheres, connected mainly with the ramification of nerve fibre running to the opposite sides of the body, are united together a considerable way down by a transverse band of nerve fibres, which at once unite the two into one organ, and make the union so effected a living efficient union by carrying a multitude of lines of communication from the one side to the other. Just below this, in the interior of the organ are two great central bodies, known as the basal ganglia, and consisting of nerve fibres massed together with grey matter around them, that in front being chiefly motor nerves brought to a junction, the latter sensory nerves combined in like manner. The same arrangement holds in both hemispheres, thereby providing that the respective masses of motor, and of sensory nerves lie exactly opposite each other. Behind these in the centre, lying in a position under both hemispheres are four small bulbs connected with the nerves of vision, and also with the cerebellum; and behind them, covered by the posterior lobe of the brain is the cerebellum itself, or little brain, largely concerned with coordination of movements, or equilibrium of the two sides of the system. Just below these arrangements the two great cords of nerve fibre descend towards the body, which are covered by a transverse mass, known as the bridge, appearing complete as a crossing, and containing transverse fibres from the cerebellum, as well as a series of longitudinal fibres. Immediately underneath the bridge are pillars or masses of nerve, constituting the crowning portion of the spinal system, and formed in eight distinct bodies, the two in front and the two in rear being elongated and known as pyramids, those in the centre being rounded in figure. From the elongated bodies, the nerve fibres pass across to the opposite sides of the body. This gathering is known as the medulla oblongata. Just beneath comes the spinal canal, from which at the different joints of the spine are given out a suitable supply of sensory and motor nerves as previously described.

Having thus given a general account of the central arrangements of the nerve system of the human body, it is important to state that an order of things closely analogous obtains in other and lower orders of organism, in respect of interior plan, so that if the interior of the brain of the dog were laid open to view it would present a plan of distribution very similar to that now described.

To complete the view of the functions of the brain as indicated by recent research, I have next to give a brief account of an extended course of experiments of great delicacy designed to ascertain whether it may be possible to localize certain functions within a definite area of the brain. All are familiar with the fanciful subdivisions of the outer surface of the human skull, under the name of phrenology, represented on moulds of the head, all marked with dividing lines and figures. This pretentious and unscientific assumption of knowledge which no one possessed, has had its time of popularity, aided by a general recognition of comparative superiority in head formation in persons of known ability. Any thing equivalent to an exact partition of the bony covering protecting the brain, has not been favored by scientific observations; but these fanciful maps of the head, which have been sold cheap, and fully certified, may serve as a guide to a general notion of what has been attempted on the surface of the brain itself, after removal of the skull. The illustrative aid, however, consists in nothing more than the suggestion of distinct areas, for there is no analogy between what has been discovered by the observations now to be described, and the "bumps" alleged to be found on the cranium.

The conjecture which may be said to have originated experiments as to localization was that there was a close resemblance between the action of nerve energy, and an electric

« PreviousContinue »