Page images
PDF
EPUB

is represented only by the thin envelope or periplast, so that | karyosome, consisting of an achromatic plastinoid substance the whole body is practically endoplasm. When the two layers are well differentiated the endoplasm is more fluid and coarsely granular, and contains various organs, chief amongst them in importance being the nucleus, which must be considered specially and may be put aside for the present.

impregnated with chromatin. If the karyosome is large and there is very little chromatin between it and the nuclear membrane, the nucleus is of the type termed vesicular. A nuclear membrane is not, however, always present, and true nucleoli, of the type found in the nuclei of metazoan cells, are not found in Protozoa.

In considering the functions of ingestion and assimilation of food a distinction must be drawn between those Protozoa which absorb solid food-particles, that is to say, which are holozoic in habit, and those which, being holophytic, saprophytic or parasitic in habit, absorb their nourishment in a state of solution. Only in holozoic forms is a special apparatus found for ingestion or digestion of food; in all other forms nutriment is absorbed by osmosis through the body-wall, presumably at any point of the surface. In holozoic forms we must distinguish further those in which the protoplasm is naked at the surface from those in which the body is clothed by a firm cuticle or cell-bolism and vital processes of the body generally, and the micromembrane. In naked forms food-particles are taken in at any point of the body-surface, either by means of the pseudopodia, or by the action of flagella causing them to impinge upon the surface of the body. In either case the food is absorbed by the protoplasm simply flowing round it and engulfing it, and the food passes into the interior of the body in a tiny droplet of water forming what is termed a food-vacuole. Into the food-vacuole the surrounding protoplasm secretes digestive enzymes, so that each such vacuole represents a minute digestive cavity, in which the food is slowly digested, rendered soluble, and absorbed by the surrounding protoplasm. The insoluble residue of the food is finally rejected by expelling the food-vacuole and its contents from the surface of the body at any convenient point.

The simple process of food-absorption described above for the more primitive naked forms is necessarily modified in detail, though not in principle, in corticate Protozoa, that is to say, in forms provided with a cuticle. In the first place, it becomes necessary to have a special aperture for the ingestion of food, a cell-mouth or cytostome. Primitively the cytostome is a simple pore or interruption of the cuticle, but in forms more highly evolved the aperture is prolonged inwards in the form of a tube lined by ectosare and cuticle, forming a gullet or oesophagus which ends in the endoplasm. Food-particles are forced by the action of cilia or flagella down the oesophagus and collect at the bottom of it in a droplet of water which, after reaching a certain size, passes into the endoplasm as a foodvacuole in which the food is digested. For rejection of the insoluble residue of the food-vacuoles, a special pore or cell-anus (cytopyge) may be present. In the Ciliata there is often a distinct anal tube visible at all times, but as a rule the anus is only visible at the moment that faecal matter is being ejected from it, though fine sections show that the pore is a constant one. In the higher Flagellata, on the other hand, the oesophageal ingrowth forms commonly a sort of cloacal cavity, into which the contractile vacuole or vacuoles discharge themselves, and into which also the food-vacuoles evacuate their residues.

Besides the food-vacuoles already described, and the nuclear apparatus presently to be dealt with, the endoplasm may contain various metaplastic products, that is to say, bodies to be regarded as stages in the upward or downward metabolism of the protoplasmic substance. Such substances may take the form of coarse granules of various kinds, crystals, vacuoles or droplets of fatty or oily nature, pigment-grains, and other bodies. In the holophytic Flagellata the endoplasm contains also various organs proper to the vegetable cell, such as chlorophyll-bodics (chromatophores), pyrenoids, grains of a starchy nature (paramylum), and so forth, which need not be described here in detail.

The nucleus in Protozoa is usually a compact, fairly conspicuous structure, composed of chromatin combined in various ways with an achromatic substance or substances. Sometimes the chromatin is distributed in smaller masses through the nucleus, producing a granular type of nucleus; more often the chromatin is more or less concentrated in a central mass forming a so-called

A given individual may have more than one nucleus, and the number present may amount to many thousands, as in the plasmodia of Mycetozoa. In such cases the nuclei may be all of one kind, that is to say, not markedly different in size, structure or function, so far as can be seen; or there may be a pronounced morphological differentiation of the nuclei correlated with a difference of function. Thus in the class Infusoria two nuclei are found in each individual; a macronucleus which is somatic in function, that is to say, which regulates the metanucleus, which is generative in function, that is to say, which remains in reserve during the ordinary, "vegetative" life of the organism and becomes active during the act of syngamy, after which the effete macronucleus is absorbed or cast out and a new somatic nucleus is formed from portions of the micronuclei which have undergone fusion in the sexual act. Thus the micronucleus of the Infusoria can be compared in a general way with the germ-plasm of the Metazoa, like which it remains inactive until the sexual union. On the other hand, in some Flagellata a differentiation of the nucleus of quite a different type is seen, a smaller, kinetic nucleus being separated off from the larger, trophic or principal nucleus. The kinetic nucleus has the function, apparently, of controlling the locomotor apparatus, so that the specialization of these two nuclei is of a kind quite different from that seen in the Infusoria.

Besides the nuclear substance which is concentrated to form the principal nucleus or nuclei, there may be present also extranuclear granules of chromatin, so-called chromidia, scattered throughout the whole or some part of the protoplasmic body. Chromidia may be normally present in addition to the principal nucleus, or may be formed from the principal nucleus during certain phases of the life-cycle. In some cases the entire nucleus may become resolved temporarily into chromidia, from which a new nucleus may be formed again later by condensation and concentration of the scattered granules. When the chromidia are numerous and closely packed they may form a so-called chromidial network (Chromidial-Netz). Recent observations on the reproduction of some Sarcodina have shown that the chromidia may possess great importance in the life-cycle as representing generative chromatin which, like the micronucleus of the Infusoria mentioned above, remains in reserve until, by the process of syngamy, the nuclear apparatus is renewed; while the principal nuclei represent, like the macronuclei, somatic or vegetative chromatin which becomes effete and is cast off or absorbed when syngamy takes place. These questions will be discussed further below.

It was formerly supposed that the lowest Protozoa were entirely without a nucleus, and on this supposition E. Haeckel attempted to establish a class named by him Monera, defined as Protozoa consisting of protoplasm alone, in which a nucleus was not differentiated. To this class were referred various organisms whose alleged archaic nature was expressed by such names as Protogenes primordialis, organisms which, like so many other of the primitive forms of animal life described by Haeckel, have been scen by that naturalist alone up to the present. In all Protozoa that have been examined by modern methods a nucleus in some form has been demonstrated to exist, and it must be supposed, until proof to the contrary be forthcoming, that in the case of the so-called Monera either the nucleus was overlooked owing to defective technique, or it had been temporarily resolved into chromidia.

The nuclear apparatus may be supplemented by other bodies of which the nature is not always clear. Such is the socalled "Nebenkern" of Paramocba eilhardi, apparently of the nature of a centrosome. Sometimes the karyosome acts like a

(see GREGARINES, COCCIDIA, &c.).

centrosome during the division of the nucleus, and sometimes | in a general way, but can be given special names in special cases true centrosomes are present. Flagella also commonly arise from basal granules of a centrosomic nature, blepharoplasts in the correct sense of the term; these blepharoplasts are always in connexion with the nucleus, or with the kinetic nucleus if there is one distinct from the trophic nucleus, as in the genus Trypanosoma and allied forms.

Reproduction of the Protozoa.-The mode of reproduction in these organisms is the same as that of the cell generally, and takes always the form of fission of some kind; that is to say, of division of the body into smaller portions, each of which represents a young individual. The division of the body is preceded by that of the nucleus, if single, or of each nucleus in the cases where there are two different nuclei; if, however, more than one nucleus of the same kind be present, the nuclei may be simply shared amongst the daughter-individuals, this mode of division being known as plasmotomy. Other organs of the body may either, like the nucleus, undergo fission, or may be formed afresh in the daughter-individuals.

The division of the nucleus in Protozoa may take place by the direct method or by means of mitosis. Direct division, without mitosis, is of very common occurrence; the division may be simple or multiple, that is to say, into only two parts, or into a number of fragments formed simultaneously. An extreme case of multiple fission is seen in the formation of the microgametes of Coccidium schubergi, where the nucleus breaks up into a great number of chromidia, which become concentrated in patches to form the several daughter-nuclei. In some cases, on the other hand, multiple daughter-nuclei are formed by rapidly repeated simple division of the parent nucleus. The mode of division may be different in different nuclei of the same individual; thus in the Infusoria the macronucleus divides by direct division, the micronucleus by mitosis.

The mitosis of the Protozoa is far from being of the uniform stereotyped pattern seen in the Metazoa, but, as might have been expected, often shows a much simpler and more primitive condition. Centrosomes are often absent, and their place may be taken, as stated above, by other bodies. The nuclear membrane may be retained throughout the mitosis. Definite chromosomes can, as a rule, be made out, but the chromosomes are often very numerous and minute, without definite form, and divide irregularly. Much remains to be done in studying the mitosis of the Protozoa, but it is probable that wider knowledge will show many conditions intermediate between direct division and perfect mitosis.

The simplest method of fission in Protozoa is that termed binary, where the body divides into two halves, which may be equal and similar, so that the result is two sister-individuals impossible to distinguish as parent and offspring. In many cases of binary fission, however, the resulting daughter-individuals may be markedly unequal in size, so that one may be distinguished as the parent, the other as the offspring. If the daughterindividual be relatively very small, and formed in a more or less imperfect condition at first, the process is termed gemmation or budding. The buds formed in this way may be either external, formed on the surface of the body, or internal, that is, formed in special internal cavities, from which the offspring are later set free, as in many Acinetaria. Gemmation may be correlated with multiple nuclear fission in such a way that buds are formed over the whole body surface of the organism, which thereby undergoes a process of simultaneous multiple fission into numerous daughter-individuals. Rapid multiple fission of, this kind is termed sporulation, and is a form of reproduction which is of common occurrence, especially in parasitic forms. Usually the central portion of the parent body remains over as a residual body (Restkörper), but sometimes the parent organism is entirely resolved into the daughter-individuals, which are termed spores 1 The kinetic nucleus of Trypanosoma is sometimes, but in the writer's opinion wrongly, named centrosome or blepharoplast; the bodies to which cytologists give these names are achromatic bodies; the kinetic nucleus is a true chromatic nucleus. The question of the centrosome in Protozoa is discussed by R. Goldschmidt and M. Popoff.

Life-cycles of the Protozoa.-It is probable that in all Protozoa, as in the Metazoa, the life-history takes its course in a series of recurrent cycles of greater or less extent, a fixed point, as it were, in the cycle being marked by the act of syngamy or conjugation, which represents, apparently, a process for recuperation of the waning vital powers of the organism. It is true that in many types of Protozoa syngamy is not known as yet to occur. but in all species which have been thoroughly investigated syngamy in some form has been observed, and there is nothing to lead to the belief that the sexual process is not of universal occurrence in the Protozoa..

The life-cycle of a given species may be very simple or it may be extremely complex, the organism occurring under many different forms at different phases or periods of its development. The polymorphism of the Protozoa is best considered under three categories, according to the three main causes to which it is due, namely, first, polymorphism due to adaptation to different conditions of existence; secondly, polymorphism due to differences of size and structure during growth; thirdly, polymorphism due to the differentiation of individuals in connexion with the process of syngamy or sexual conjugation.

1. Polymorphism in Relation to Life-conditions.—As a protection against unfavourable conditions, or for other reasons, most Protozoa have the power of passing into a resting condition, during which the vital functions may be wholly or in part suspended. In the resting phase the animal usually becomes enveloped in a resistant membrane or cyst secreted by it, and is then said to be encysted. The formation of a cyst may be a response to conditions of various kinds. Very commonly it is formed to protect the organism against a change of medium, as in the case of freshwater forms liable to desiccation, or of parasites about to pass out of the bodies of their hosts. In other cases the organism passes into the resting state in order to absorb ingested nutriment or in order to enter upon reproductive phases.

As a preparation for encystment, organs of locomotion, if present, are retracted or cast off; contractile vacuoles cease to be formed; and the food-vacuoles disappear, usually by digestion of their contents and rejection of the waste residue. The body becomes rounded off and more or less spherical in form, and the protoplasm becomes denser, that is, less fluid and more opaque, but at the same time of diminished specific gravity, by loss of water. The cyst is then secreted at the surface as a layer of varying thickness and toughness. In the encysted condition many Protozoa are capable of being transported by the wind, a fact which explains their appearance in infusions and liquids exposed to the air. In favourable conditions the cysts germinate, that is to say, the envelope is dissolved and the contained organism or organisms are set free to enter upon the strenuous life once more.

In the Mycetozoa, organisms adapted to a semi-terrestrial life in moist surroundings, the protoplasm is capable, when desiccated, of passing into a tough condition resembling sealingwax, which, when moistened, assumes again its normal appearance and active condition.

Resting phases, analogous to encystment, are seen in the spores of various forms, especially those of parasitic habit, which are commonly enclosed in tough, resistant envelopes or sporocysts, and enveloped as a protection against change of medium or of host. Within the sporocyst multiplication of the sporoplasm may take place to form more or fewer sporozoites. The sporocysts usually show definite symmetry and structure, infinitely variable in different species. In a suitable medium the spores germinate by rupture of the sporocysts and escape of the contents.

2. Polymorphism in Relation to Growth and Development.—In many species of Protozoa there is hardly any difference to be observed between different individuals during their active phases except in size. Those individuals about to multiply by fission are slightly above the normal in dimensions; on the

other hand, those resulting from recent fission will be smaller than the average; and such differences are, it need hardly be said, more pronounced when the fission is of the unequal binary type, or in cases of gemmation or multiple fission. In cases also where a given strain of a species is becoming senile, it is sometimes observed that the individuals are markedly undersized on the average.

On the other hand, it is often the case that the young individuals resulting from a recent act of multiplication may differ from adult individuals of the species, not merely in size, but in structural characters, to such an extent that their relationship to the adult forms could not be determined by simple inspection without other evidence. This is especially true of those species in which multiplication by sporulation occurs, giving rise to numerous small spores which may at first be in a resting condition, enveloped in protective sporocysts, but which sooner or later become free, motile individuals known technically as swarmspores. Thus in many Sarcodina the adult is a large amoeboid organism which produces by sporulation a great number of relatively minute swarm-spores. These may be either, as in the common Amoeba proteus, amoeboid organisms, so-called amoebulae or pseudopodiospores, or, as in the Foraminifera and Radiolaria, flagellated organisms, so-called flagellulae or flagellispores. Sometimes, as in many Mycetozoa, amoeboid and flagellated phases may succeed each other rapidly in the develop ment of the swarm-spores. The familiar Noctiluca miliaris is another instance of a species which produces by sporulation numerous tiny swarm-spores quite different from the parent form in their characters. Such instances could be multiplied indefinitely amongst the Protozoa.

When the young individuals differ greatly from the adults in structure and appearance they may be regarded as larval forms, and it is interesting to note that such forms appear to be just as much recapitulative, in the phylogenetic sense, as are the larvae of many Metazoa. A striking instance is that of the Acinetaria, in which the swarm-spores produced by gemmation are ciliated, and thus betray affinities with the Ciliata which could hardly be suspected from a study of the adult forms alone. Similarly, in the genus Trypanosoma, the young forms often show a Herpetomonas-like structure which is probably of phyletic significance. The swarm-spores of Sarcodina and of Noctiluca mentioned above can, perhaps, be regarded in the same light. On the other hand, many larval forms cannot be considered as exhibiting recapitulative characters, but merely as adaptations to environment or other special life-conditions. This is especially true, as in Metazoa, of parasitic forms, subject as they are to great vicissitudes, to cope with which the most finely adjusted adaptations are necessary on the part of the organism.

extent.

3. Polymorphism in Relation to Sex.-In all Protozoa of which the life-cycle has been made known in its entire course, a process of syngamy or sexual union has been found to occur. There are still many forms in which syngamy remains to be discovered: this is true even of some groups of considerable It is quite possible, therefore, that Protozoa exist in which syngamy does not occur. In view, however, of the widespread occurrence of sexual processes amongst unicellular organisms, both of animal and vegetable nature, and the fact that extended observation continually brings to light new instances of this kind, it is safer, in cases amongst the Protozoa in which syngamy is not known to occur, to explain its apparent absence by the imperfections of the present state of our knowledge, than to suppose that in such forms sexual phenomena are entirely lacking in the life-cycle.1

The process of syngamy, though greatly diversified in different forms, consists essentially of one and the same process in all cases; namely, the fusion of nuclear matter from two distinct individuals. Plus ça change, plus c'est la même chose! Hence true syngamy may be distinguished as karyogamy from the process of plastogamy, or fusion of the protoplasmic bodies, It will be shown below, however, that in some species syngamy may perhaps be secondarily in abeyance,

of frequent occurrence in many forms of Protozoa. The individuals whose nuclei undergo fusion are termed gametes, They may be in no way different from each other or from ordinary individuals of the species, or, on the other hand, they may be highly differentiated in size, form and structure. The two gametes may undergo complete fusion into one body, thus giving rise to an individual termed generally a zygote or copula, but which may bear special names in special cases (e.g. vermicule or oökinete of the malarial parasites, &c.); such a process is termed sometimes copulation. On the other hand, the bodies of the two gametes may remain distinct, and portions of the nucleus of each be exchanged between them; to this condition the term conjugation is sometimes specially applied. The act of syngamy may be performed in the free condition, or in the resting state, within a cyst.

The significance of syngamy has been much discussed, and it is very difficult to make positive statements upon this point. By comparing the life-cycles of different forms it is found that syngamy sometimes precedes, sometimes follows, a period of great reproductive activity on the part of the organism. Thus in such a form as Noctiluca, syngamy between two full-grown individuals is followed by rapid sporulation and the production of a swarm of young individuals; on the other hand, in Foraminifera and Radiolaria, rapid sporulation of adult individuals produces a numerous progeny of young forms which may go through the process of syngamy and produce zygotes that simply grow into the adult form. Comparing these two types of development, instances of which might be greatly multiplied, it is seen that in one case syngamy follows a period of growth and precedes a period of proliferation in the life-cycle, and that in the other case exactly the reverse is true. Hence it follows that syngamy must not be regarded as in any way specially connected with reproduction, but must be considered in its relation to the lifecycle as a whole, and in those instances in which syngamy is followed by increased reproductive activity the explanation must be sought in the general physiological effects of the sexual process upon the vital powers of the organism.

In the Metazoa the sexual process is always related to the production of a new individual, that is to say, of a multicellular organism for which there is no analogy amongst the Protozoa, although an approach to the Metazoan condition is seen in colony-forming Flagellata, such as Volvox and its allies. The reproduction of Protozoa is analogous to the ordinary process of cell-division and multiplication which is going on at all times in the bodies of the Metazoa, and which can be observed in the production of the gametes; that is to say, in the period of the lifecycle immediately preceding the sexual process in the Metazoa, just as much as in the developmental phases which follow syngamy and result in the building up of a new Metazoan individual. Hence, so far as the Protozoa are concerned, the phrase "sexual reproduction" is an incongruous combination of words; reproduction and sex are two distinct things, not necessarily related or in any direct causal connexion; and in order to arrive at any theory of sex it is necessary first of all to clear away all misconceptions or preconceived notions arising from analogies with the multicellular Metazoan individual.

Many observations indicate that the vital powers of the Protozoa become gradually weakened, and the individual tends to become senile and effete, unless the process of syngamy intervenes. The immediate result of the sexual union is a renewal of the vitality, a rejuvenescence, which manifests itself in enhanced powers of metabolism, growth and reproduction. These facts have been most studied in the Ciliata. It is observed that if these organisms be prevented from conjugating with others of their kind they become senile and finally die off. It has been found by G. N. Calkins, however, that if the senile individuals be given a change of medium and nourishment, their vigour may be renewed and their life prolonged for a time, though not indefinitely; there comes a period when artificial methods fail and only the natural process of syngamy can enable them to prolong their existence. The results obtained by Calkins are of great interest, as indicating that under special conditions

of the environment the necessity for the sexual process may be | tin. In other cases, however, for example Actinosphaerium, diminished and the event may be deferred for a long time, if not indefinitely. Hence it is quite possible that in many Protozoa the process of syngamy may be in abeyance, just as there are plants which can be propagated indefinitely by suckers or cuttings without ever setting seed; and it is possible that the inoculative or artificial transmission of parasitic Protozoa from one host to another, as in the case of pathogenic trypanosomes, without any apparent diminution in their vital powers, is an instance of this kind.

the chromidia must be interpreted, from their behaviour as somatic chromatin, and the principal nuclei as generative chromatin, hence R. Goldschmidt has proposed the special term sporetia for those chromidia which represent reserve generative chromatin. In the majority of Protozoa, however, the nuclear substance is not differentiated in such a way that it can be distinguished by any visible peculiarities into somatic and generative chromatin.

The process of reduction is not limited, apparently, to the elimination of somatic chromatin, but a portion of the generative chromatin is also cast off. Thus in the Infusoria not only the somatic macronucleus, but also a considerable portion of the generative micronucleus, is absorbed at each act of conjugation. The elimination of generative chromatin is perhaps of importance as a factor in heredity and the production of variations, or possibly for sex determination, as will be discussed below; it is difficult to suggest any other explanations for it, unless it be supposed that during the exercise of ordinary vital functions a portion of the generative chromatin be rendered effete as well as the somatic chromatin.

From the considerations set forth in the foregoing paragraphs it must be supposed that the synkaryon, the fusion-product of the two pronuclei in syngamy, consists at first purely of generative chromatin, which must speedily become differentiated

As a general rule, in order that syngamy may be attended by beneficial results to the organism, it is necessary that the two conjugating individuals should be from different strains, that is to say, they should not be nearly related by descent and parentage. Thus F. Schaudinn found that in order to observe the sexual union of the gametes of Foraminifera it was necessary to bring together gametes of distinct parentage. On the other hand it has been observed that in many Protozoa, especially in parasitic forms, syngamy takes place between individuals of common parentage. Thus in Amoeba coli, according to F. Schaudinn, a single individual becomes encysted and its nucleus divides into two; after each nucleus has undergone certain maturative changes they give rise to pronuclei which conjugate and initiate a new developmental cycle. Syngamy between sister individuals, or autogamy, as it has been termed, is not, however, confined to parasitic Protozoa; it has been observed in Actino-into the regulative somatic chromatin of the ensuing generations sphaerium by R. Hertwig. The benefit to the organism, if any, arising from autogamy can only be supposed to result from the rearrangement and reconstitution of the nuclear apparatus. The frequent occurrence of autogamy suggests that in many Protozoa the nature of the environment diminishes the importance of the sexual process, at least so far as the mixture of nuclear material from distinct sources is concerned; and, since autogamy is most common in parasitic forms, this result may, in the light of G. N. Calkins's experiments, be ascribed in great part to the frequent changes of environment and nutrition to which parasitic forms, above all, are subject.

True syngamy consists, as has been said, of nuclear fusion or karyogamy. It rarely, if ever, happens, however, that such fusion takes place without the conjugating nuclei having undergone some process of reduction by elimination of a portion of the nuclear substance, in a manner analogous to the maturation of the germ-cells in the Metazoa. The chromatin thus eliminated may be cast out from the body of the organism as one or more so-called polar bodies; or may be absorbed in the cytoplasm; or may remain in the cytoplasm and be left over in the residual protoplasm in cases where syngamy is followed by a process of rapid multiplication by sporulation; but in all cases the chromatin removed from the nucleus is rejected in some way or other and plays no part in the subsequent development of the organism. The nuclei of the gametes which have completed this process of épuration nucléaire are then ripe for syngamic fusion and are termed pronuclei; the union of two pronuclei produces a single nucleus termed a synkaryon.

and the generative chromatin held in reserve for the next act of syngamy. Such a differentiation can be actually observed in the Infusoria, where immediately after conjugation the synkaryon divides into one or more pairs of nuclei, each pair becoming the two unequally sized nuclei of an ordinary individual, sometimes with, even at this stage, an apparently wanton elimination of nuclear substance. Thus the somatic and generative chromatin of the Protozoa offer a certain analogy with the soma and germplasm of Metazoa; but in making such comparisons the distinction between a physiological analogy and a morphological homology should be borne clearly in mind.

It has been stated above that the two gametes of a given species of Protozoa may be perfectly similar and indistinguishable, or may be very different one from the other. The condition with similar gametes is termed isogamy, that with differentiated gametes anisogamy. Every transition can be found from complete isogamy and pronounced anisogamy in the Protozoa; in tracing, however, the evolution of specialized gametes it must be remembered that we are dealing only with visible morphological differences mainly of an adaptive nature, without prejudice to the question of the possible existence of a fundamental sexual antithesis in all gametes, present even when not perceptible. The sex philosopher O. Weininger has urged that sex is a fundamental attribute of living things, and that the living substance, protoplasm, consists of arrhenoplasm and thelyplasm united in varying proportions. Certain observations of F. Schaudinn tend to support this view; in Trypanosoma noctuae, for example, Schaudinn found that the process of reduction in one gamete took an opposite course to that which it took in the other gamete. In one gamete certain portions of the nucleus were retained and certain other portions rejected; in the maturation of the other gamete the portions rejected and the portions retained were the reverse. Hence Schaudinn was led to regard the indifferent individuals as essentially hermaphrodite in nature, and therefore capable of giving rise to gametes of either order by climination of one or the other set of sexual elements; a theory which throws further light on the elimination of generative chromatin mentioned above. It is possible. therefore, that the gametes of Protozoa may possess sexual characters intrinsically different even when perfectly similar so far as can be perceived. It is very probable, for instance, that the isogamy in Gregarines is a state of things derived secondarily from a primitive condition of anisogamy (see GREGARINES).

It is certain that in many, if not in all, cases the nuclear substance that is rejected as a preliminary to syngamy consists of somatic or vegetative chromatin; that is to say, of chromatin that has been functional in regulating the ordinary vital functions, metabolism, growth, reproduction, &c., during previous generations, and has become effcte; while on the other hand the chromatin that persists to form the pronuclei is generative chromatin which has remained in reserve for the sexual act and has retained its peculiar powers and properties unimpaired. The truth of this explanation is extremely obvious in such forms as the Infusoria, where somatic and generative chromatin are concentrated into two distinct and entirely separate nuclei. In some Rhizopoda also the body contains one or more principal nuclei and a mass of chromidia, and it has been observed that as a preparation for syngamy the principal nuclei are eliminated and the pronuclei are formed from the chromidia; in such cases, therefore, it is reasonable to regard the principal nuclei as repre- The simplest possible condition of the gametes is seen in the senting somatic chromatin, the chromidia as generative chroma-free-swimming Ciliata, forms which in other respects are the

If,

most highly organized of Protozoa; here the individuals which | ordinary individuals, so long as they have not undergone the conjugate are only distinguished from ordinary individuals of process of nuclear reduction preliminary to syngamy. the species by the fact that their nuclei have undergone very however, the gametes are highly specialized they may forfeit complicated processes of reduction and nuclear elimination. In the power of multiplication. In this respect the microgametes these forms there is also no difference between young and adult are worse off than the other sex; on account of the great reduction individuals, beyond scarcely perceptible differences of size of the body-protoplasm, and the entire absence of any reserve between individuals about to divide and those that are the materials, they must either fulfil their destiny as gametes or products of recent division, so that these species are practically die off. The macrogametes, on the other hand, with their monomorphic in the active condition. In forms, however, great reserves of cytoplasm and nutriment, are more hardy than which, like Vorticella, are of sessile habit, small free-swimming any other forms of the species, and are able to maintain their individuals are liberated which seek out and conjugate with the existence in periods of famine and starvation when all other ordinary sessile individuals. Here we have an instance of a forms are killed off. Moreover they may regain the power of morphological differentiation of the gametes which is clearly multiplication by a process of parthenogenesis, a term originally adaptive to the life-conditions of the species. In other Protozoa applied in the Metazoa to cases where a germ-cell of definitely there may be, as already stated, differences, more or less pro- female character, that is to say an ovum, acquires the power of nounced, between young and adult individuals, and syngamy reproduction without fertilization by syngamy. A macromay take place either between young individuals (microgamy) | gamete multiplying by parthenogenesis first goes through certain or between adults (macrogamy); the gametes may be in either nuclear changes whereby it is set back, as it were, from the female case ordinary individuals of the species, not specially differen- to the indifferent condition, and it is then able to multiply by tiated in any way, or on the other hand they may be differentiated fission like any ordinary, non-sexual individual of the species. from ordinary individuals, while still similar and isogamic Parthenogenesis has been described by F. Schaudinn in the amongst themselves; or, finally, they may be anisogamic; that malarial parasites and in Trypanosoma noctuae. In both cases is to say, differentiated into two distinct types. Thus in the the female forms are able to persist under adverse conditions Radiolaria, for example, an adult individual breaks up by a after all other forms have perished, and then by parthenogenesis process of sporulation into numerous minute flagellated swarm- they may multiply when conditions are more favourable, overrun spores; these may be all of one kind, termed isospores, which the host again, and cause a relapse of the disease of which they develop directly without undergoing syngamy; or they may be are the cause. S. v. Prowazek has described in Herpetomonas of two kinds, termed anisospores, both different in their character | muscac-domesticae an analogous process of multiplication on the from the isospores, and incapable of development without part of male individuals, and has coined the term ethcogenesis syngamy. for this process, but the statement needs confirmation, and as a general rule the microgamete is quite incapable of independent reproduction under any circumstances.

When the gametes are differentiated the divergence between them almost always follows parallel paths. One gamete is distinguished by its smaller size, its greater activity, and its comparative poverty in granules of reserve food-material; hence it is termed the microgamete. The other gamete is distinguished by its greater bulk, its pronounced sluggishness and inertness, and its tendency to form and store up in the cytoplasm reserve nutriment of one kind or another; hence it is termed the macrogamete, or, as some prefer to write it, the megagamete (better megadogamete). When these differences are very pronounced, as, for instance, in the Coccidia and other Sporozoa, a condition is reached which is practically indistinguishable from that seen in the sperm and ova of the Metazoa. Hence the microgamete is generally regarded as male, the macrogamete as female; and these terms may be conveniently used, although they do not in themselves imply more than would the words positive and negative, or any other pair of terms expressive of a fundamental contrast. The microgamete may become reduced to a mere thread of chromatin, which may possess one or two flagella for purposes of locomotion, as in Coccidia, &c., or may move by serpentine movements of the whole body, which resembles in its entirety a flagellum, and is often wrongly so termed. In contrast with the microgamete, its correlative, the macrogamete, tends to become a bulky, inert body, often with great resemblance to an ovum, its cytoplasm dense and granular, packed with reserve food-materials as an egg contains yolk, and without organs of locomotion or capacity for movement of any kind. Hence the macrogamete is the passive element in syngamy, which requires to be sought out and "fertilized " by the active microgamete, a division of labour perfectly ana-plication without change of character for many generations; logous to that seen in the male and female gametes of Metazoa. In those cases where syngamy takes place by interchange of nuclear substance between two gametes which remain separate from one another, as in the Infusoria, each gamete forms two pronuclei, which are distinguished by their behaviour as the active and passive pronuclei respectively. The active pronucleus of each gamete passes over into the body of the other and fuses with its passive pronucleus to form a synkaryon A similar method of procedure occurs also in Amoeba coli, according to F Schaudinn.

It is often found that not only are the gametes differentiated, but that their immediate progenitors may also exhibit characters which mark them off from the ordinary or indifferent individuals of the species. In such cases the parent-forms of the gametes are termed gametocytes, and they may differ amongst themselves in characters which render it possible to distinguish those destined to produce microgametes from those which will produce the other sex. The parent-individuals of the microgametes, or microgametocytes, are distinguished as a general rule by clearer protoplasm, free from coarse granulations, and a larger nucleus, more rich in chromatin. The macrogametocytes, on the other hand, usually have coarsely granular cytoplasm, rich in reserve food-stuffs, and a relatively small nucleus. The gametocytes produce the gametes by methods that vary according to the degree of specialization of the gametes. In isogamous forms, of which good examples are furnished by many Gregarines (q.v.), the gametes are produced by a process of sporulation on the part of the gametocytes, a certain amount of residual protoplasm being left over. In forms with pronounced anisogamy, for instance, Coccidia or Haemosporidia, the microgametes are produced by sporulation in which almost the whole mass of the body of the gametocyte may be left over as residual protoplasm, together with some portion of the nucleus; in the other sex, however, the process of sporulation may be altogether in abeyance, and the macrogametocyte becomes simply converted into the macrogamete after going through a process of nuclear reduction. The gametocytes may, however, possess the power of multior, to put the matter in other words, the sexual differentiation may be apparent not merely in the generation immediately preceding the gametes, but in many generations prior to this. Thus a given species may consist of three different types of adult individuals, male, female and indifferent, each multiplying in its own line. Complicated alternations of generations are the result, and if at the same time there is a well-marked difference between young and adult forms of the species the height of polymorphism is reached. Very commonly a double series of generations occurs, the non-sexual or indifferent forms multiplyWhen gametes are not very highly specialized they may stilling apart from the sexually differentiated individuals and the retain the power of multiplication by division possessed by generations immediately descended from them; in such cases the

« PreviousContinue »