Page images
PDF
EPUB

arithm, must not be confounded with the sign which denotes that the natural number is negative. That which the index of the logarithm is intended to show, is not whether the natural number is positive or negative, but whether it is greater or less than a unit. (Art. 16.)

[blocks in formation]

In these examples, the logarithms are taken from the tables, and added, in the same manner, as if both factors were positive. But after the product is found, the negative sign is prefixed to it, because + is multiplied into -. (Alg. 105.)

[blocks in formation]

Here, the indices of the logarithms are negative, but the product is positive, because the factors are both positive.

[blocks in formation]
[blocks in formation]

41. FROM THE LOGARITHM OF THE DIVIDEND, SUBTRACT THE LOGARITHM OF THE DIVISOR; THE DIF. FERENCE will BE THE LOGARITHM OF THE QUOTIENT. (Art. 36.)

[blocks in formation]

42. The decimal part of the logarithm may be subtracted as in common arithmetic. But for the indices, when either of them is negative, or the lower one is greater than the upper one, it will be necessary to make use of the general rule for subtraction in algebra ; that is, to change the signs of the subtrahend, and then proceed as in addition. (Alg. 82.) When 1 is carried from the decimal part, this is to be considered affirmative, and applied to the index, before the sign is changed.

[blocks in formation]

In this example, the upper logarithm being less than the lower one, it is necessary to borrow 10, as in other cases of subtraction ; and therefore to carry 1 to the lower index, which then becomes +2. This changed to - 2, and added to – 1 above it, makes the index of the difference of the logarithms - 3.

[blocks in formation]

Here, 1 carried to the lower index, makes it +4. This changed to - 4, and added to 1 above it, gives – 3 for the index of the difference of the logarithms.

[ocr errors]
[blocks in formation]

The quotient of 0.0985 divided by 0.007241, is 13.6.
The quotient of 0.0621 divided by 3.68, is 0.01687.

43. To divide negative quantities, proceed in the same manner as if they were positive, (Art. 40.) and prefix to the quotient, the sign which is required by the rules for division in algebra.

[blocks in formation]

In these examples, the sign of the divisor being different from that of the dividend, the sign of the quotient must be negative. (Alg. 123.)

[blocks in formation]

44. Involving a quantity is multiplying it into itself. By means of logarithms, multiplication is performed by addition. If, then, the logarithm of any quantity be added to itself, the

logarithm of a power of that quantity will be obtained. But adding a logarithm, or any other quantity, to itself, is multiplication. The involution of quantities, by means of logarithms, is therefore performed, by multiplying the logarithms.

Thus the logarithm
of 100

is 2
of 100 x 100, that is, of 100' is 2+2

= 2 X 2. of 100 X 100 X 100, 100 is 2+2+2 =2X3. of 100 X 100 X 100 X 100, 100* is 2+2+2+2 =2X 4.

On the same principle, the logarithm of 100” is 2 Xn.
And the logarithm of x”, is (log. x) Xn. Hence,

45. To involve a quantity by logarithms. MULTIPLY THE LOGARITHM OF THE QUANTITY, BY THE INDEX OF THE POWER REQUIRED.

The reason of the rule is also evident, from the consideration, that logarithms are the exponents of powers and roots, and a power or root is involved, by multiplying its index into the index of the power required. (Alg. 220, 288.)

[blocks in formation]
[blocks in formation]

46. It must be observed, as in the case of multiplication, (Art. 38.) that what is carried from the decimal part of the logarithm is positive, whether the index itself is positive or negative. Or, if 10 be added to a negative index, to render it positive, (Art. 12.) this will be multiplied, as well as the other figures, so that the logarithm of the square, will be 20 too great; of the cube, 30 too great, &c.

[blocks in formation]

2. Required the 4th power of 0.1234 Root 0.1234 log.

1.09132 or Index

4

9.09132

4

[blocks in formation]
« PreviousContinue »