Page images
PDF
EPUB

as if the case of the 7th, which is left out, were, as he expressly makes it, an objection against the proposition itself. Whoever is curious may read what Proclus says of this in his commentary on the 5th and 7th Propositions ; for it is not worth while to relate his trifles at full length.

It was thought proper to change the enunciation of this 7th Prop. so as to preserve the very same meaning; the literal translation from the Greek being extremely harsh and difficult to be understood by beginners.

PROP. XI. B. I. A corollary is added to this proposition, which is necessary to Prop. 1. B. 11. and otherwise.

PROP. XX. and XXI. B. I. Proclus, in his commentary, relates, that the Epicureans derided this proposition, as being manifest even to asses, and needing no demonstration, and his answer is, that though the truth of it be manifest to our senses, yet it is science which must give the reason why two sides of a triangle are greater than the third : but the right answer to this objection against this and the 21st, and some other plain propositions, is, that the number of axioms ought not to be increased without necessity, as it must be if these propositions be not demonstrated. Mons. Clairault in the Preface to his Elements of Geometry, published in French at Paris, anno 1741, says

- That Euclid has been at the pains to prove, that the two sides of a triangle which is included within another, are together less than the two sides of the triangle which includes it:" but he has forgot to add this condition, viz. that the triangles must be upon the same base: because, unless this be added, the sides of the included triangle may be greater than the sides of the triangle which includes it, in any ratio which is less than that of two to one, as Pappus Alexandrinus has demonstrated in Prop. 3. B. 3. of his mathematical collections.

PROP. XXII. B. I. Some Authors blame Euclid because he does not demonstrate that the two circles made use of in the construction of this problem must cut one another : but this is very plain from the determination he has given, viz. that any two of the straight lines DF, FG, GH, must be greater than the third. For who is so dull, though only beginning to learn the Elements, as not to per

DM F.G H ceive that the circle described from the centre F, at the distance FD, must meet FH betwixt F and H, because FD is less than FH; and that for the like reason, the circle described from the centre G, at the distance GH or GM, must meet DG betwixt D and G; and that these circles must meet one another, because FD and GH are together greater than FG? And this determination is easier to be understood than that which Mr. Thomas Simpson derives from it, and puts instead of Euclid's, in the 49th page of his Elements of Geometry, that he may supply the omission he blames Euclid for, which determination is, that any of the three straight lines must be less than the sum, but greater than the difference of the other two: from this he shews the circles must meet one another, in one case; and says, that it may be proved after the same manner in

any

other case : but the straight line GM, which he bids take from GF, may be greater than it, as in the figure here annexed; in which case his demonstration must be changed into another.

PROP. XXIV. B. I. To this is added, “ of the two sides DE, DF, let DE be that which is not greater than the other,” that is, take that side of the two DE, DF which is not greater than the other, in order to make with it the angle EDG equal to BAC; because without this restriction D there might be three different cases of the proposition, as Campanus and others make.

Mr. Thomas Simpson, in p. 262, of the second edition of his Elements of Geometry, printed anno 1760, observes in ΕΙ his notes, that it ought to have

G been shewn, that the point F

F falls below the line EG. This

probably Euclid omitted, as it is very easy to perceive, that DĠ being equal to DF, the point G is in the circumference of a circle described from the centre D at the distance DF, and must be in that part of it which is above the straight line EF, because DG falls above DF, the angle ÉDG being greater than the angle EDF.

PROP. XXIX. B. I. The proposition which is usually called the 5th postulate or ilth axiom, by some the 12th, on which this 29th depends, has given a great deal to do, both to ancient and modern geometers: it seems not to be properly placed among the axioms, as indeed it is not selfevident; but it may be demonstrated thus :

DEFINITION I.

The distance of a point from a straight line, is the perpendicular drawn to it from the point.

DEF. II.

One straight line is said to go nearer to, or further from, another straight line, when the distances of the points of the first from the other straight line become less or greater than they were; and two straight lines are said to keep the same distance from one another, when the distance of the points of one of them from the other is always the same.

AXIOM.

A straight line cannot first come nearer to another straight line, and then go further from it, before it A

C.

B cuts it; and, in like manner,

E a straight line cannot go further from another straight.

F

H

G line, and then come nearer to it; nor can a straight line keep the same distance from another straight line, and then come nearer to it, or go further from it; for a straight line keeps always the same direction.

For example, the straight line ABC cannot first come nearer to the straight line, DE, as from the point

See the figure in preceding page.

A to the point B, and then
from the point B to the point

A.
B

C
C, go further from the same

D

E DE: and, in like manner, the R

G

-H straight line FGH cannot go further from DE, as from F to G, and then, from G to H, come nearer to the same DE: and so in the last case, as in fig. 2.

PROP. I.

If two equal straight lines AC, BD, be each at right angles to the same straight line AB: if the points C, D be joined by the straight line CD, the straight line EF drawn from any point E in AB unto CD, at right angles to AB, shall be equal to AC, or BD.

If EF be not equal to AC, one of them must be
greater than the other; let AC be the greater: then,
because FE is less than CA, the straight line CFD is
nearer to the straight line AB at the point F than at
the point C, that is, CF comes nearer to AB from the
point C to F: but because
DB is greater than FE, the

F
straight line CFD is further
from AB at the point D than
at F, that is, FD goes fur-

F
ther from AB from F to D:
therefore the straight line
CFD first comes nearer to

А E B
the straight line AB, and
then goes further from it, before it cuts it, which is im-
possible: if FE be said to be greater than CA, or DB,
the straight line CFD first goes further from the straight
line AB, and then comes nearer to it, which is also
impossible: therefore FE is not unequal to AC, that
is, it is equal to it.

PROP. II.

If two equal straight lines AC, BD be each at right angles to the same straight line AB; the straight line CĎ which joins their extremities makes right angles with AC and BD.

Join AD, BC; and because, in the triangles CAB, DBA, CA, AB are equal to DB, BA, and the angle CAB equal to the angle DBA; the base BC is equal*

* 4. 1.

B

to the base AD: and in the triangles ACD, BDC, AC,
CD are equal to BD, DC, and
the base AD is equal to the

C

F D
base BC. Therefore the angle
ACD is equal * to the angle

G * 8. 1.
BDC: from any point E in
AB draw EF unto CD, at

A

E right angles to AB; therefore by Prop. 1. EF is equal to AC, or BD; wherefore, as has been just now shewn, the angle ACF is equal to the angle EFC: in the same manner, the angle BDF is equal to the angle EFD; but the angles ACD, BDC are equal; therefore the angles EFC and EFD are equal and right angles *; wherefore, also the angles ACD, BDC are * 10 Def. 1. right angles.

CoR. Hence, if two straight lines AB, CD be at right angles to the same straight line AC, and if betwixt them a straight line BD be drawn at right angles to either of them, as to AB; then BD is equal to AC, and BDC is a right angle.

If AC be not equal to BD, take BG equal to AC, and join CG: therefore, by this proposition, the angle ACG is a right angle; but ACD is also a right angle ; wherefore the angles ACD, ACG, are equal to one another, which is impossible. Therefore BD is equal to AC; and by this proposition BDC is a right angle.

PROP. III. If two straight lines which contain an angle be produced, there may be found in either of them a point from wbich the perpendicular drawn to the other shall be

greater than any given straight line.

Let AB, AC be two straight lines which make an angle with one another, and let AD be the given straight line; a point may be found either in AB or AC, as in AC, from which the perpendicular drawn to the other AB shall be greater than AD.

In AC take any point E, and draw EF perpendicular to AB: produce A E to G, so that EG be equal to AE; and produce FE to H, and make EH equal to FE, and join HG. Because, in the triangles AEF, GEH, AE, EF, are equal to GE, EH, each to each, and contain equal* angles, the angle GHE is therefore equal to * . 15. 1. the angle XFE, which is a right angle: draw GK per

[ocr errors]

4. 1.

« PreviousContinue »