XIII. XIV. The multiplications and divisions contain no anomalies which require remark. XV. The exercises under this number require no remarks. + =0. ac XVI. The first eleven examples nnder this number offer no difficulties. 12. In this example it may be shewn that. 2 2 2 + (6 – c)(c - a)' (c-a)(a - b)(a - b)(6-c) 17. Each fraction may be simplified as the first, (a – b)2 – (6 – c)2 – (a – 6+6 – c)(a – -b+c)_ (a – c)(a + c - 26) _a+c - 26 a2 + ab - bc - c? (a? -- ca)+ b(a – c) (a – c)(a +c+b) a+b+c' 18. The shortest method here is to reduce each expression to the same identical form. Thus a? + 62 - C? 62 +c2 - a? c? +a? - 82 +2+ +2+ +2 bc + bc (a+b+c)(a + b –c)+(6+c+a)(b+c-a)_ (c+a + b)(c+a-0) = (a+b+c). {a+b=c+b+c-a +c+a-b ab bc abc + ab'bc c++ abc + ас b + ab ac ac Next {tab– (a+b+c)2}. (attēc + ca} . XVII. 1. 0. 2. 0. 3. 0. 4. 0. 5. -1. 6. i. 7. +3. 8. a+b+c. 9. O. 2c 10. 0. 11. 12. 0. 13. 1. 14. a? +62 +c? + ac + ab + bc. (6 - c)(a - b) 15. a>(a+b)(a +c)_asla? +(6+c)a+bc), 21b+c)a 1+ (a - b)(a -c) a? -(b+c) + bc Similarly b8(6+c)(6+a) =631+ 2(a + c)6 (6 -c)(6-a) (6 - c)(6 and =C3 a-C { { ") }, c*(c + a)(c+b) 2(a + b)c? 1 (c- a)(c-b) Then 2(b + c)a“ 2(a + c)64 2 $(6+c)a4 _(a + c)b4 } (a−b)(a-c) (a - b)(b -c) a- a bl b-C (a -- c)(b - c) (a - c)(b -c) (a - c)(6-c) 2{a2b2(a+b) – c?(912 +62)(a + b)} And 2(a + b)c+ (c-a)(c-b) (c-a)(c-6) (c - a)(c-b) (c - a)(C-6) =2(a+b)(b + c)(c+a). And the sum of the three fractions is as + b3 + c3 + 2(a + b)(b+c)(c + a). XVIII. 2)=c(1–0) } 1. 0. 2. 3. 0. 4. 1. x-clx-h_x-a x-cs - x(a - b) + (a? — 12) – c(a - b) (a — c)(6–c) (a - c)(b-c) Next (x-a)(x – b)_ (x – c)(x-a-b+c) (a - c)(6 – c) (a – c)(b -c) 6. 1. 7. 22. 8. (x – a)+(y – 6) + (z – c). (52 – ac)y 10. (ax – by) (by – cz) XIX. 1 1 4. (a+b+c) 5. 6. (a + x)(b + x)(c + x) (a + b)(6+c)(c + a) 7. Sometimes by separating each fraction into two parts, the process may be simplified. b+c-a b+c (o + c)(c-a)(a - b) (6 + c)(c - a)(a-6) (6+c)(c - a)(a - b) 1 (c-a)(a - b) (6+c)(0-a)(a – 6)* a a cta-6 1 Similarly b 1 1 Then, =0. Sec. XVII. (c-a)(a - b) *la-6)(6—c)*(6—c)(c-a) And the aggregate of 6 + + Es. I. will be found to be cla? + ab + b2 - c?) (a + b)(62 – ca)(c2 – a?) 8. Add the first two fractions, next the other two, and the sum of the results is zero, 4(a? – ca). ac XX. 1. 68 + (a + c)b? – (a + c)26—(a – c)?(a +c). (6+c-a)(a + b – c)(c+a-6) 8abc 1 2. 3. 4. 4. 4(6-0) 5. 6. 8. 1. (a+b+c)* 10. Let y=b+c-2a =(c-a)-(a-) z=c+a - 2b = (a - b) – (6-c) x=a+b- 2c= (b − c) — (c-c) - Y 2 2x a+b - 2c, b+c-2a , cta - 26 Hence 2y 22 + + + 22 3. 2 -- 2x - 22 + -3. 2Hence the product of the quantities --3X-3= +9. a-bey+2—2 2 + a-6 b-0 C-a + a-6 C-a + 2y 4. XXI. (a+b+c)(a +b-c)+(a + b^c)d (u +d-c)(a +d+c+b) a-c+d 8. The fraction when reduced is 2abe(1 + a2 + b2 +ca) 4(1 + a2 +62 +c?) 9. By means of the formula 23 – y: = (x— Y)(x2 + xy + y2), the expression is reduced to 9(6--c)(a? +62 +c? - ab-bc-ca) (6+c-2a)(a? +62 +c? - ab-ac- bc) 10. By inspection it may be seen that b-c is a common factor of the numerator and denominator. When this factor is removed, the fraction is (b+c)as - (69 + bc+c?)+ b2c2 and its highest common divisor is a?- (b+c)a +ab. a3 - (0? + bc+co)a + bc(b + c) 2 c 2 11. After reducing and arranging the quantities according to the descending powers of a, the highest common divisor will be found to be a? -(b+c)a +(62 — bc+ca). 12. Here (ab+cd)(a? +62—(? – da) – (ac+bd)(a? – 82 +c? - da) (a? + 62 - (? - d)(a? – 62 +c? - d2) + 4(ab+cd)(ac+bd) (ac + bd +ac+bd)(62 - c2)+(ab+cd - ac- bd)(a? – dla) {(a?-da) + (62 -c)}. {(a?-da) - 162 - c')} + 4(a?bc + baul + c'ad+dbc) (a + d)(b + c)(12 --ca) + (a - d)(b - c)(a? - da) (a?-da)2 – (62 - c2)2 + 4ad(62 +ca) + 4bc(a? + d2) (a+d)(b – c){(6+c)(6+c)+(a -d)(a - d)} (a?-da)? – (62 - c?)? +(a +d)?(6+c)2 – (6-c)? (a - d): (a + d)(6 – c). {(6+c)2 + (a - d)} {(a+d)? – (6–c)2},{(6+c)2 + (a – d)"} (a + d)(b-c) (c?— 62) {a“ – (co +62)a? +Boc2} _(c+b)(c - b)(ao – bo)(a’ – c^). (a - b)(a -c) =(c+b)(a + b)(a +c). The second in the same manner. - 3(12 – c^)a:+3(64 –c)a? – 382c2(12 – c?) - 3(b - c)a? + 3(62 – c2)a – 3bc6 –c) {? (6+ ? (a−b)(a -c) 16. The given expression when reduced to an improper fraction becomes (1 + m + )(z - x)+ (1+ m? + x)(x - 6)^+ (1+ m + n”)== - {= + (c - a) + (a - b)}* 1+m? + n2 (1 + m2 + no)(x - a)?=(x - a)? + mo(x – a)2 + n2(x - a)?, (1 + mo + n2)zo=22+ m2^2 + n2-2, - 2mn(x - a)(y-b) – n°(y – )2. Here 32 - z, mo(x – a). – m?(x – a)', no(y – 6)? – no(y – 12) disappear, and the remaining nine terms may be arranged as follows : (x - a)? – 2m2(x – a)+ mox?=(x – Q -- mz)", no(x-1)2 – 2mn(x—a)(y—b) +mo(y—b)?= {n(x—a) – m(y—b)}": 1+ m+ n2 XXII. 1. (r— 1)(. — 2)(x − 3)(x-4) 2. :}3. 0. 3* --* 4. 1+ 3 - 4x + x2 -- 2x3 – 24 – 25 5. a? +62. 6. 2(ay-bx)? + 2(ax – by). (1 + x)(1+x2)(1+33) 7. }{cx+y)s +(y+z)3 + (x+2)5 - 2025 +y5+:5)}. See Ex. 12, p. 30, Sec. IV. x(x + 2y) 8. 9. ab(1 – 2?) 10. (1–a)(1+02) + 2ab(a - b). x2 + 4xy – 2y?' 2(62 - a?) (1 - a?)(1 - 62)(1-x2) 2 XXIII. 1 and 2 offer no difficulties. 3. a?c=x: – xyz, b2y=y: – xyz, c2z=z3 – 3xy ; = x2 + y2 + 2 - xy – 2z - yz=a? + b2 +ca. 1 and Similarly for each of the other three expressions. X - ?! .. ax + ay=x -- y, and (1+aly=(1- a)x 3+y _ita y_1+0 1+0 ; similarly and y 1-a 1-C Whence 1+al+b 1+c =1. 1-a 1-61-c ya 7. Multiply by xyz, and arrnge the terms so that x, y, z may be included in brackets in the same manner as a, b, c in the given expression. 8. The sum of the numerators of the four fractions when reduced to a common denominator is 433–3(a+b+c)82+2(ab+ac+bc)s- abc, which when reduced and the substitution for s made, the result is abc. 9. The given expression can be put under the form 62 +c2 - a? -1+ -1=0, 2ab -+ 2ab = (a +c-6). (c(a--c)+b(c+a+b) - a(6-c+a)}, = (a +c-b). {62 – (a —c)2}=(a +c-6)(6+a – c)(b + c-a)=0. 10. First add the three fractions, then as the sum is equal to unity, the numerator of the sum is equal to the common denominator. Whence there results a3 + b3 + c3 – 3abc=0, and a3 + b3 + c3 = 3abc, or (a + b + c)(a2 +62 +62 - ab - ac – bc)=0. Taking a +b+c=0, then a2 +62 - c? = - 2ab, a? + c2 – 1,2 = - 2ac, and 6% +0° - a2 = -2bc. Whence 72 c2 ila? 72 c?) 15a3 +63 +03 abc 2 abc 2 1 1 1 a3 + b3 + c3 and dividing these equals by a3b3c", there results + + 63 cs alca or + + + ac |