Page images
PDF
EPUB

PROPOSITION XXXVI.

D

[ocr errors]
[ocr errors]

197. When a Wedge is in Equilibrio ; the Power acting against

the Back, is to the Force acting Perpendicularly against either Side, as the Breadth of the Back AB, is to the Length of the Side AC or BC..

For, any three forces, which sustain one
another in equilibrio, are as the correspond-
ing sides of a triangle drawn perpendicular
to the directions in which they act. But
AB is perp. to the force acting on the back,
to urge the wedge forward ; and the sides
AC, BC are perp. to the forces acting on
them; therefore the three forces are as AB,
AC, BC.
198. Corol. The force on the back, lic

Its effect in direct. perp. to AC,
And its effect parallel to AB ; DC,

are as the three lines which are per. to them, And therefore the thinner a wedge is, the greater is its effect, in splitting any body, or in overcoming any resistance against the sides of the wedge.

AB,

SCHOLIUM.

199. But it must be observed, that the resistance, or the forces above-mentioned, respect one side of the wedge only. For if those against both sides be taken in, then, in the foregoing proportions, we must take only half the back an, or else we must take double the line ac or DC.

In the wedge, the friction against the sides is very great, at least equal to the force to be overcome, because the wedge retains any position to which it is driven ; and therefore the resistance is doubled by the friction. But then the wedge has a great advantage over all the other powers, arising from the force of percussion or blow with which the back is struck, which is a force incomparably greater than any dead weight or pressure, such as is employed in other machines. And accordingly we find it produces effects vastly superior to those of any other power; such as the splitring and 'raising the largest and hardest rocks, the raising and lifting the largest ship, by driving a wedge below it, which a man can do by the blow of a mallet: and thus it appears that the smali blow of a hammer, on the back of a wedge, is incomparably greater

than
any mere pressure, and will overcome it.

OE

а

OF THE SCREW.

200. THE Screw is one of the six mechanical powers, chiefly used in pressing or squeezing bodies close, though, sometimes also in raising weights.

The screw is a spiral thread or groove cut round a cylinder, and everywhere making the same angle with the length of it. So that if the surface of the cylinder, with this spiral thread on it, were ůnfolded and stretched into a plane, the spiral thread would form a straight inclined plane, whose length would be to its height, as the circumference of the cylinder, is to the distance between two threads of the screw: as is evident by considering that, in making one round, the spiral rises along the cylinder the distance between the two threads.

PROPOSITION XXXVII.

ence

201. The Force of a Porver applied to turn a Screw round, is to

the Force with which it presses upward or downward, setting aside the Friction, as the Distance between two Threads, is to the Circumference where the Power is applied.

The screw being an inclined plane, or half wedge, whose height is the distance between two threads, and its base the circumference of the screw; and the force in the horizontal direction, being to that in the vertical one, as the lines

perpendicular to them, namely, as the height of the plane, or distance of the two threads, is to the base of the plane, or circumference of the screw; therefore the power is to the pressure, as the distance of two threads is to that circumfer

But, by means of a handle or lever, the gain in power is increased in the proportion of the radius of the screw to the radius of the power, or length of the handle, or as their circumferences. Therefore, finally, the power is to the pressure, as the distance of the threads, is to the circumference described by the power.

202. Corol. When the screw is put in motion; then the power is to the weight which would keep it in equilibrio, as the velocity of the latter is to that of the former; and hence their two momenta are equal, which are produced by multiplying each weight or power by its own velocity. So that this is a general property in all the mechanical powers, namely, that the momentum of a power is equal to that of the weight which would balance it in equilibrio; or that each of them is reciprocally proportional to its velocity.

SCHOLIUM

SCHOLIUM. 203. Hence we can easily compute the force of any machine turned by a screw. Let the annexed figure represent a press driven by a screw, whose threads are each a quarter of an inch asunder; and let the screw be turned by a handle of 4 feet long, from a to B; then, if the natural force of a man, by which he can lift, pull, or draw, be 150 pounds; and it be required to determine with what force the screw will press on the board at D, when the man turns the handle at A and B, with his whole force. Then the diameter ab of the power being 4 feet, or 48 inches, its circumference is 48 x 3*1416 or 1504 nearly; and the distance of the threads being of an inch; therefore the power is to the pressure, as 1 to 6035; but the power is equal to 1501b; theref. as 1 : 6031 :: 150: 90480; and consequently the pressure at d is equal to a weight of 90480 pounds, independent of friction.

204. Again, if the endless screw as be turned by a handle ac of 20 inches, the threads of the screw being distant half an inch

с each; and the screw turns

P D a toothed wheel E, whose pinion 1 turns another wheel

and the pinion m of this another wheel G, to the pinion or barrel of which is hung a weight w; it is required to determine what weight the man will be able to raise, working at the handle c; supposing the diameters of the wheels to be 18 inches, and those of the pinions and barrel 2 inches; the teeth and pinions being all of a size. .

[graphic]
[graphic]
[ocr errors]

Her

Here 20 3.1416 x 2 = 125·664, is the circumference

of the power

[ocr errors]
[ocr errors]

And 125.664 to , or 251.328 to 1, is the force of the screw alone.

Also, 18 to 2, or 9 to 1, being the proportion of the wheels to the pinions; and as there are three of them, therefore 93 to 1, or 729 to 1, is the power gained by the wheels.

Consequently 251•328 x 729 to 1, or 1832181 to I nearly, is the ratio of the power to the weight, arising from the advantage both of the screw and the wheels.

But the power is 150lb; therefore 150 x 183218, or 27482716 pounds, is the weight the man can sustain, which is equal to 12269 tons weight.

But the power has to overcome, not only the weight, but also the friction of the screw, which is very great, in some cases equal to the weight itself, since it is sometimes sufficient to sustain the weight, when the power is taken off.

ON THE CENTRE OF GRAVITY. 205. THE CENTRE of GRAVITY of a body, is a certain point within it, on which the body being freely suspended, it will rest in any position; and it will always descend to the

l lowest place to which it can get, in other positions,

PROPOSITION XXXVII. 206. If a Perpendicular to the Horizon, from the Centre of

Gravity of any Body, fall Within the Base of the Body, it will rest in that Position ; but if the Perpendicular

fall Without the ; Base, the Body will not rest in that Position, but will tumble down.

For, if co, be the perp. from the centre of gravity C, within the base : then the body cannot fall over towards E A; because, in turning on the point A, the centre of gravity

d Ć would describe an which would rise fromctó É; contrary to the nature of that centre, which only rests when in th owest place. For the same reason, the body will not fall towards D. And therefore it will stand in that position,

arc

But

But if the perpendicular fall without the base, as cb; theit the body will tumble over on that side : because, in turning on the point a, the centre c descends by describing the descending arc ce.

207. Corol. 1. If a perpendicular, drawn from the centre of gravity, fall just on the extremity of the base; the body may stand; but any the least force will cause it to fall that way. And the nearer the perpendicular is to any side, or the narrower the base is, the easier it will be made to fall, or be pushed orer that way; because the centre of gravity has the less height to rise : which is the reason that a globe is made to roll on a smooth plane by any the least force. But the nearer the perpendicular is to the middle of the base, or the broader the base is, the firiner the body stands.

208. Corel. 2. Hence if the centre of gravity of a body be supported, the whole body is supported. And the place of the centre of gravity must be accounted the place of the body; for into that point the whole matter of the body may be supposed to be collected, and therefore all the force also with which it endeavours to descend.

209. Corol. 3. From the property which the centre of gravity has, of always descending to the lowest point, is derived an easy mechanical method of finding that centre.

Thus, if the body be hung up by any point A, and a plumb line AB be hung by the same point, it will pass through the centre of gravity; because that centre is not in the lowest point till it fall in the plumb line. Mark the line AB on it. Then hang the body up by any other point D, with a plumb line DE, which will also pass through E} the centre of gravity, for the same reason as before; and therefore that centre must ·be at c.where the two plunb lines cross each other.

210. Or, if the body be suspended by two or more cords GF, GH, &c, then a plumb line from the point G will cut the body in its centre of gravity c.

A

[ocr errors]

B

1

E

211. Like

« PreviousContinue »