Elements of Geometry and Trigonometry from the Works of A.M. Legendre: Adapted to the Course of Mathematical Instruction in the United States

Front Cover
A.S. Barnes, 1885 - Geometry - 512 pages
0 Reviews
Reviews aren't verified, but Google checks for and removes fake content when it's identified

From inside the book

What people are saying - Write a review

We haven't found any reviews in the usual places.

Other editions - View all

Common terms and phrases

Popular passages

Page 28 - If two triangles have two sides of the one equal to two sides of the...
Page 90 - A cos 6 = cos a cos c + sin a sin c cos B cos c = cos a cos 6 + sin a sin 6 cos C Law of Cosines for Angles cos A = — cos B...
Page 18 - Things which are equal to the same thing, are equal to each other. 2. If equals are added to equals, the sums are equal. 3. If equals are subtracted from equals, the remainders are equal. 4. If equals are added to unequals, the sums are unequal.
Page 4 - The logarithm of any power of a number is equal to the logarithm of the number multiplied by the exponent of the power.
Page 253 - For, the point A being the pole of the arc EF, the distance AE is a 'quadrant ; the point C being the pole of the arc DE, the distance CE is likewise a quadrant : hence the point E is...
Page 61 - A Circle is a plane figure bounded by a curved line every point of which is equally distant from a point within called the center.
Page 94 - A'B'C', and applying the law of cosines, we have cos a' = cos b' cos c' + sin b' sin c' cos A'. Remembering the relations a' = 180 -A, b' = 180 - B, etc. (this expression becomes cos A = — cos B cos C + sin B sin C cos a.
Page 126 - If two polygons are composed of the same number of triangles, similar each to each and similarly placed, the polygons are similar.
Page 46 - All the interior angles of any rectilineal figure, together with four right angles, are equal to twice as many right angles as the figure has sides.
Page 125 - THEOREM. Similar triangles are to each other as the squares of their homologous sides.

Bibliographic information