Some Propositions in Geometry: In Five Parts

Front Cover
Wertheimer, Lea and Company, 1884 - Geometry - 144 pages
0 Reviews
Reviews aren't verified, but Google checks for and removes fake content when it's identified

From inside the book

What people are saying - Write a review

We haven't found any reviews in the usual places.


Other editions - View all

Common terms and phrases

Popular passages

Page 70 - The angles at the base of an isosceles triangle are equal to one another; and if the equal sides be produced the angles on the other side of the base shall be equal to one another.
Page 73 - To describe an isosceles triangle, having each of the angles at the base double of the third angle.
Page 41 - To find a fourth proportional to three given straight lines. Let A, B, C be the three given straight lines ; it is required to find a fourth proportional to A, B, C. Take two straight lines DE, DF, containing any angle Book VI. EDF ; and upon these make DG equal to A, GE equal to B, and DH equal to C : and having joined GH, draw EF parallel...
Page 40 - To find a mean proportional between two given straight lines. Let AB, BC be the two given straight lines ; it is required to find a mean proportional between them. Place AB, BC in a straight line, and upon AC describe the semicircle ADC, and from the point B draw (9.
Page 50 - Three numbers may be in proportion when the first is to the second as the second is to the third.
Page 106 - PKOPOSITION 46. PROBLEM. To describe a square on a given straight line. Let AB be the given straight line : it is required to describe a square on AB.
Page 29 - Similar triangles are to one another in the duplicate ratio of their homologous sides.
Page 74 - ... To divide a given straight line into two parts, so that the rectangle contained by the whole and one of the parts, shall be equal to the square on the other part.
Page 45 - To inscribe a circle in a given square. Let ABCD be the given square ; it is required to inscribe a circle in ABCD.
Page 128 - CD the triplicate ratio of that • which AE has to CF. Produce AE, GE, HE, and in these produced take EK equal to CF, EL equal to FN, and EM equal to FR; and complete the parallelogram...

Bibliographic information